
Mitigating Return-Oriented Programing Attacks and Other

Exploitation Attempts via Secure API Execution

Piotr Bania

www.piotrbania.com

2011

Abstract

With the discovery of new exploit techniques, new
protection mechanisms are needed as well. Mit-
igations like DEP (Data Execution Prevention)
or ASLR (Address Space Layout Randomization)
created a significantly more difficult environment
for vulnerability exploitation. Attackers, however,
have recently developed new exploitation methods
which are capable of bypassing the operating sys-
tem’s security protection mechanisms.

Currently Return-Oriented Programming at-
tacks are used heavily for the exploitation purposes.
In order to protect against such attacks, we have
developed a solution which decreases the probabil-
ity of successful exploitation by the attacker. We
are able to achieve this goal by estimating and lim-
iting the places from where selected (protected)
API functions can be referenced. Our solution does
not require program source code and can be imple-
mented for both user mode and kernel mode pro-
grams. Currently the prototype works on IA-32
compatible processors.

Our solution decreases the possibility of suc-
cessful vulnerability exploitation without notice-
able performance impact and false-positive alerts.
Our work is not only limited to Return-Oriented
Programming attacks. It can also harden shellcode
execution and other exploitation methods as well.

1 Design

Our solution has only one small requirement
it requires that the selected module (Portable
Executable (PE) file) must have an relocation
directory. This is not really any major obstacle

since most of the currently deployed applications
have relocation directories - all kernel mode must
have relocation directories - and due to nowadays
security requirements all of them should (for
example in order to be compatible with Address
Space Layout Randomization security mechanism
(ASLR)).

Following points presents the main algorithm of
our solution:

1. Detect all already loaded and any further
loaded Portable Executable modules

2. Each of the found modules will be then tested
for compatibility issues

3. If a compatible module is found it will be
tested for the occurrence of protected API
functions located in the module’s import di-
rectory

4. Entire address space of the module is then
scanned for values (memory operands) that
point to the protected API address in the Im-
port Address Table (IAT)

5. Each of such found entries is then changed,
and now points to a memory (stored in random
location) with newly created code land for it

6. From now on every direct reference to pro-
tected API exported by selected module is con-
sidered as attack attempt.

1.1 Protected API functions

Return-oriented programming is a known exploita-
tion technique which allows the attacker to use

1

http://www.piotrbania.com

stack memory to indirectly execute previously
picked instructions (so called gadgets). Our tests
showed that most of the known ROP exploits
always try to use VirtualProtect API at some
point in the exploitation process. Typically the
ROP exploits try to find the VirtualProtect

address, compute the parameters, execute the
VirtualProtect API (through the find address)
and return to the "now valid" memory which
contains the larger shellcode. Additionally (be-
sides VirtualProtect) in our prototype we
have decided to protect additional important
APIs like: VirtualProtectEx, VirtualAlloc,
VirtualAllocEx, WriteProcessMemory,
GetProcAddress. However it doesn’t mean
other API functions cannot be protected as well.

1.2 Policy and additional informa-

tions

Our policy states that protected API functions can-
not be accessed in any different way than as a
result of control transfer done by the gadget we
have generated. It means that even if the attacker
chooses to parse the kernel32.dll export section
manually or calculate the API distance through
other API function addresses in IAT in order to
get VirtualProtect address (for example) it will
be useless since the original API will be overwrit-
ten (intercepted). Our research showed that PE
modules call API functions typically by using the
Import Address Table. In our tests Protected APIs
functions were always accessed through the IAT en-
try. Obviously sometimes other API functions are
called "differently" - for example the GetProcAd-
dress API can be used in order to resolve other API
function addresses without directly using the IAT
entries. However such cases can still be handled.
Additionally inter-modular API calls (for example
in KERNEL32.DLL are easily detectable (always call
rel - 5 bytes) and they are handled by our proto-
type.

1.3 Ways of API referencing

Our research showed that API functions addresses
stored in IAT are typically referenced by the fol-
lowing instructions only:

• mov reg, dword ptr [api_addr]

• call dword ptr [api_addr]

• jmp dword ptr [api_addr]

Obviously the memory operand in this case al-
ways has the corresponding relocation entry. This
feature allows us to predict perfectly the places
where the protected API is referenced by the se-
lected module. Since at this point we are dealing
with 3 types of instructions only full disassembler
is not required and a simple signature based check
is enough. Depending on the instruction a spe-
cific code land is generated. Original instruction
is patched with JMP REL (5 bytes) which leads
to the newly generated code. Each generated code
land is unique for specified instruction. Please not
that the mentioned instructions are always mini-
mum 5 bytes long - this allows us to patch them
freely.

1.4 Generated code lands

Below we present newly generated code lands for
specific instruction types. Each generated code
block should be unique for selected original instruc-
tion.

push dword ptr [esp -4]

pushfd

pushad

push esp

push gadget_up_border

push gadget_down_border

push instrVA

call test_regs

mov [esp+ PUSHAD.reg], eax

popad

xor reg , destVA ^ SECRET_KEY (eax)

add esp ,4

popfd

jmp next_instruction

Listing 1: Generated code land for mov reg, mem.

push dword ptr [esp -4] ; *

pushfd

pushad

push esp

push gadget_up_border

push gadget_down_border

push instrVA

call test_regs

mov [esp+ PUSHAD.reg], eax

popad

xor eax , destVA ^ key

add esp ,8

push nextINSTR_VA (if this was a call only)

2

jmp eax

with RET instrumentation:

call eax ; dest

original_instructions_without_ret

pushfd

pushad

push [esp+ PUSHAD_SIZE + PUSHFD_SIZE]

call verify_ret

popad

popfd

original_ret

Listing 2: Generated code land for call/jmp/callrel.

Notes:

• test_regs function - if registers are correct
(their values do not overlap with calculated
borders, [esp-4] value is also checked here)
function returns key in EAX otherwise it never
returns

• verify_ret function is responsible for check-
ing (filtering) the return address

1.4.1 RET instrumentation

RET instrumentation is additional feature that is
used when following sequence of code is found:

call dword ptr [api]

org instructions

pop / leave (must occur)

ret (in 15 bytes between call and orinal instrs)

Listing 3: Sequence suitable for additional RET
check.

The main idea here is to check the return address
before the control transfer will occur. Tests include
checking whether the return address is a part of
loaded module or whether there is a call opcode
before it.

1.5 Checks and Borders

Since we have disabled the possibility of direct API
usage the attacker may still try to use a gadget
(part of original code) that executes protected api
through our generated code land. Such attacks
can be (in most of the cases) filtered by following
checks:

• checking [esp-4] value

• testing if any of the general purposes regs are
inside the calculated borders

The method of calculating the borders re-
lies on the information gathered from the relo-
cation section (see CalculateGadgetBorderUp /
CalculateGadgetBorderDown for details).

2 Weaknesses and Drawbacks

One of the possibilities for the attacker would be
to use gadgets that meet the border requirements
(such places are hard to find) or to use native API
functions (typically API parameters for such func-
tions are harder to compute, plus the syscall num-
bers change between various Microsoft Windows
systems). Main drawback of this solution is that
it may not work with modules that do not have
relocation directory, are packed or are using cus-
tom way of executing (referencing) protected API
functions.

3

	1 Design
	1.1 Protected API functions
	1.2 Policy and additional informations
	1.3 Ways of API referencing
	1.4 Generated code lands
	1.4.1 RET instrumentation

	1.5 Checks and Borders

	2 Weaknesses and Drawbacks

