
Securing The Kernel via Static Binary Rewriting and Program
Shepherding

Piotr Bania
www.piotrbania.com

2011

Abstract
Recent Microsoft security bulletins show that ker-
nel vulnerabilities are becoming more and more im-
portant security threats. Despite the pretty exten-
sive security mitigations many of the kernel vul-
nerabilities are still exploitable. Successful kernel
exploitation typically grants the attacker maximum
privilege level and results in total machine compro-
mise.
To protect against kernel exploitation, we have

developed a tool which statically rewrites the Mi-
crosoft Windows kernel as well as other kernel level
modules. Such rewritten binary files allow us to
monitor control flow transfers during operating sys-
tem execution. At this point we are able to detect
whether selected control transfer flow is valid or
should be considered as an attack attempt.
Our solution is especially directed towards pre-

venting remote kernel exploitation attempts. Ad-
ditionally, many of the local privilege escalation
attacks are also blocked (also due to additional
mitigation techniques we have implemented). Our
tool was tested with Microsoft Windows XP, Win-
dows Vista and Windows 7 (under both virtual and
physical machines) on IA-32 compatible processors.
Our apparatus is also completely standalone and
does not require any third party software.

1 Introduction
Our tool uses the program shepherding tech-
nique [9] (monitoring control flow transfers). In
our approach, however, we are not using a dynamic
binary instrumentation engine, but instead all the
selected binary files (Windows kernel and modules)

are statically rewritten1. By monitoring the control
flow transfers we can ignore the complexities of var-
ious vulnerabilities and focus on preventing the ex-
ecution of malicious code. Section 2 describes the
design of our tool.

2 Design
Our apparatus consists of four main modules:

Integration2 Responsible for disassembling, ana-
lyzing and rewriting binary data3;

Monitoring Responsible for filtering and moni-
toring the control flow transfers;

Configuration Responsible for configuring, load-
ing and unloading the monitoring module;

Installer Responsible for replacing the rewritten
kernel and necessary drivers.

The following subsections describe each module
more thoroughly.

2.1 Integration module
Integration module is the most important and com-
plex part of this project. It can be divided in two
separate submodules: analyzer module and rewrit-
ing module.

1Using dynamic binary instrumentation engines on kernel
level code is surely harder to implement and more dangerous
to use.

3In this paper integration process is limited to kernel and
kernel mode components.

1

http://www.piotrbania.com


2.1.1 Analyzer module

The analyzer module is responsible for disassem-
bling and analyzing binary programs. In our case
the binary programs are written in the Portable Ex-
ecutable (PE) file format. The analyzer engine is a
slightly modified version of the one used in our pre-
vious automated binary differential analysis project
called AutoDiff [13]. This component is completely
standalone and does not rely on other disassembly
engines, like the widely used commercial product
IDA Pro [8].
The analyzer provides structured information for

the integration module. This includes the informa-
tion about the instructions, basic blocks, functions
and other important data. The analyzer engine
also divides the analyzed code into two major cat-
egories:

Solid code Obtained in a result of recursive
traversal disassembly and other heuristic tech-
niques based on the Portable Executable file
format characteristics;

Prospect code Obtained in any other fashion,
e.g., by using relocation information or by test-
ing solid instruction operands.

Since our engine is using recursive traversal disas-
sembly, dividing the analyzed code into those two
categories helps us to avoid further code vs data
misunderstandings. Additional heuristics mecha-
nisms are also used, since the complexity of the
executable binary files is often high. We also try to
improve the code coverage by using the Microsoft
symbol files. The main rule we have been using at
this point is that it is better to confuse code as data
than vice versa. This will be further explained in
the next subsection.
As a result we achieve very good code cover-

age together with excellent overall performance (see
Section 3.2.1).

2.1.2 Rewriting module

With the results gathered during the previous step,
the rewriting module can perform the static code
rewriting process. Basing on our previous expe-
riences with static code rewriting like in project
Aslan [1] or SpiderPig [2], we have decided to use
a more secure (stable) approach. In Aslan [1] the

approach was to interfere with all the original in-
structions and data. This of course often required
manual interaction because of the code vs data
dilemma, which cannot be totally resolved by the
static analysis. Such an approach is not really us-
able, as it cannot be fully automated. Thus, we
have decided to modify and use SpiderPig [2] in-
stead (it is easier and more secure to perform).

Code Integration Method Our tool can
rewrite the binary files in two general ways. The
first way is an non-invasive one, where the rewrit-
ten code is placed in a separate file. In other words,
the original files are not modified. This approach
requires the additional driver module to load the in-
tegrated code into the operating system and patch
all the necessary original modules in virtual mem-
ory. This approach is considered to be more secure
(in terms of stability) since the original files are
not changed. The second way (which is currently
implemented and used in our tool) is more invasive
since it modifies (rebuilds) the original Portable Ex-
ecutable files. In other words, the operating system
boots up with an already modified kernel and se-
lected kernel modules. We will describe our code
integration algorithm in reference to the currently
used method (invasive).

One of our initial assumptions in the process of
static binary rewriting was to preserve the original
file structure in such a way that the original code
and data offsets are not changed. This step is es-
sential for increasing the stability of the rewritten
code and avoiding other problems like the already
mentioned code vs data dilemma. The newly gen-
erated code which includes all the original functions
is attached to the end of the original file. Typically
the new code resides in the relocation section of
the original Portable Executable file. The destina-
tion section is expanded and modified in order to
handle executable and non-pageable code. Code is
rewritten such that all the original functions are in-
strumented (this will be described in the next para-
graph) and the overall functionality is preserved.
Rewritten functions also do not contain shared ba-
sic blocks4. The binary rewriting process can be
divided into three phases:

Instrumentation Responsible for adding instru-
4This is done especially for some protection methods we

would like to implement in the future [12, 14].

2



mentation code and expanding original control
transfer instructions;

Calculation Responsible for allocating new rela-
tive virtual addresses for the rewritten basic
blocks and for generating new relocation en-
tries;

Repairing Responsible for repairing relative off-
sets of control transfer instructions.

In the Instrumentation phase we have two pri-
mary objectives. First one is to expand all the
short conditional and unconditional jumps in order
to avoid further problems with fixing the relative
offsets in the repairing phase. Second one is strict
requirement of the program shepherding method.
In this case we add instrumentation for every in-
struction that is either a CALL or indirect JMP or
a RET instruction. Instrumentation is performed in
such a way that the filtering procedure is executed
before the original instructions. This gives us the
possibility to deny the control transfers into the
malicious memory region. It is worth noticing that
we are not instrumenting CALL or JMP indirect in-
structions which refer to imported API functions.
Firstly because the import address table is typi-
cally read-only (presents low security threat), and
secondly due to performance reasons.
The Calculation phase is responsible for the cal-

culation of new relative virtual addresses of the
newly generated basic blocks. Additionally it is
also needed for creating new relocation entries for
the generated code. If an original instruction con-
sists of an operand (either immediate or memory
immediate) that has a relocation entry, the rewrit-
ten instruction requires the corresponding reloca-
tion entry as well.
The Repairing phase is necessary for fixing the

offsets of the control transfer instructions that use
relative operands. This is essential for keeping
the rewritten correct stable and to ensure that the
execution flow will remain in the rewritten code.
At this point we don’t need to repair other con-
trol transfer instructions since we assume the con-
trol will be given back due to the emitted function
hooks (see next paragraph).
When all the phases are finished the engine is al-

most ready to produce a new Portable Executable
file that contains the rewritten code. However,

there is one essential step yet to perform. In or-
der to transfer the execution from original code to
the rewritten code, the engine must patch original
functions and redirect them to the corresponding
generated ones. This is achieved by emitting the
JMP relative instruction at the original function pro-
logue. This is not so easy to perform since the first
basic block of the original function may be smaller
than the 5 bytes required for the patch. Addition-
ally, we may confuse code with data and patch some
essential kernel structure which in the end will lead
to a system crash.

In order to do this safely, our engine decides
whether the original function can be patched or
not. The decision is based on a few tests. First
of all we check the size of first basic block. If it
is not large enough original function remains un-
patched. For the functions marked as prospect
code we apply some additional tests. For exam-
ple, we don’t patch functions that consist only of
one basic block. We also test if the selected func-
tion is entirely built from ASCII or Unicode char-
acters. As it was mentioned earlier we prefer to
redirect less functions and cause no stability issues
than vice versa. It is also worth mentioning that the
Windows kernel uses self-modifying code at certain
places, forcing us to use additional checking mech-
anisms to address such problems. Even though we
don’t redirect all the original functions, our tests
showed that it is still more than enough for our so-
lution to work successfully. After the original func-
tions are patched, the engine checks the relocation
entries one more time in order to make sure none of
them overlaps with the 5 byte relative JMP instruc-
tion. If such relocation entry is found it is simply
erased. Lastly the Portable Executable headers are
fixed. When all the issues are resolved the new PE
file is emitted.

It is important to note that the static binary
rewriting process may be performed on a different
(remote) machine.

2.2 Monitoring module
Monitoring module is developed as a device driver.
It acts as a server for the configuration module. It
is also responsible for filtering and monitoring the
control transfers caused by instrumented instruc-
tions. The filtering method is described in Sec-
tion 2.2.2. Monitoring module contains a memory

3



map structure that includes the information about
the currently loaded kernel modules. This mem-
ory map is updated after selected device driver is
loaded to or unloaded from the kernel memory. It is
worth noting that instrumented instructions in the
rewritten binary files do not execute the filtering
procedure before the monitoring module is not fully
initialized. Monitoring module is also responsible
for blocking most of the local privilege escalation
exploits by utilizing a very simple but yet effective
technique (described in the Section 2.2.1).

2.2.1 Mitigation technique for local privi-
lege escalation attacks

Most of the local privilege escalation exploits
use the NtQuerySystemInformation5 function to
gather the base addresses where the kernel mod-
ules are mapped to. On Microsoft Windows
systems, device drivers are mapped to differ-
ent memory addresses each run. Thus, get-
ting their base addresses is very often essential
for such exploits to work correctly. Our solu-
tion hooks the NtQuerySystemInformation func-
tion and denies all user-mode requests where the
SystemModuleInformation class is passed as pa-
rameter. According to our tests this method does
not influence the operating system stability6. At
this point the only way for the attacker to succeed
is to find the base address using some other method
(for example by using another vulnerability).

2.2.2 Detecting exploitation attempts

In order to detect attack attempts, the filtering
(monitoring) procedure needs to decide whether se-
lected control transfer is valid or not. Filtering pro-
cedure must be fast enough to not cause any major
slowdown of the operating system. Our tool uses
the memory map structure (mentioned in the previ-
ous section) which contains information about the
currently loaded device drivers. This information is
divided into fast memory page lookup entries which
provide the characteristics of the selected page. For
example it shows whether the page is writable, ex-
ecutable or whether it is a part of the kernel or

5EnumDeviceDrivers is also used however this API func-
tion is just a wrapper for NtQuerySystemInformation.

6Our tests were performed on a default instalations of
Microsoft Windows systems.

any other loaded module. At this point our secu-
rity policy is very simple. We mark all the control
transfers to pages that are not executable and are
not the part of kernel or other modules as attack at-
tempts. Since we don’t store the information about
the userland modules, all control transfers from ker-
nel to usermode space are automatically marked as
forbidden.

2.2.3 Reaction to attack

When an attack is detected there are two avail-
able reaction options in the monitoring module.
First one is to log the attack in a specified file and
continue the execution; this is especially useful for
honeypot-like systems. The second choice provides
the attack logging feature together with immediate
system shutdown. It is important to notice that we
are operating in the kernel mode. Therefore there
is no single task we can securely terminate in com-
parison to user mode solutions where such action
can be typically safely performed.

2.3 Configuration module
The Configuration module loads the monitoring
module driver and creates initial memory map for
all of the currently loaded kernel modules. It also
provides additional information required by the
monitoring module. Our policy allows only one
configuration attempt after system start. This is
done in order to block other potentially malicious
configuration requests from the attacker.

2.4 Installer module
This module currently consists of batch scripts
and programs that allow one to modify the Mi-
crosoft kernel and selected device drivers. On
Windows XP we are using a WINLOGON.EXE
thread injection method to disable the Windows
File Protection. This is achieved by execut-
ing the SfcTerminateWatcherThread API from
SFC_OS.DLL library. On Microsoft Windows Vista
and Windows 7 we need to take file ownership and
grant full access control permissions to ourselves.
Additionally WINLOAD.EXE is copied and patched
in order to allow the execution of modified Win-
dows kernel. We are currently working on fully

4



automating described tasks (together with easy file
recovery) for all Windows operating systems.

3 Experimental results
This section is divided into two subsections. First
one describes the results we have obtained while
testing versus selected Windows exploits. Second
one shows the performance impact.

3.1 Effectiveness
We have tested our solution with a few publicly
available exploits. Due to small number of publicly
released exploits (especially remote ones) targeting
kernel and kernel modules, our tests are currently
limited. Obtained results are presented below:

• CVE-2009-3103 (Microsoft Windows SMB2
’Smb2ValidateProviderCallback’ Remote
Code Execution Vulnerability) [3, 15]

This vulnerability allows remote attack-
ers to execute arbitrary code with system
privileges. Reliable and publicly known
exploit for this issue (see [15] for technical
details on the exploitation process) firstly
generates a so called trampoline which is
located at fixed BIOS/HAL memory region
(which is by default readable, writeable, and
executable). After the trampoline is ready the
execution is thrown to it using a CALL EAX
instruction (located in srv2.sys module).
Our solution is able to detect and block this
attack before the generated trampoline is
executed.

• CVE-2010-2743 (Microsoft Windows
win32k.sys Keyboard Layout Vulnerability)
[4, 19, 16]

This is one of the local vulnerabilities
exploited by the Stuxnet worm [20] in order
to elevate privileges. Keyboard layout vulner-
ability is caused by win32k!xxxKENLSProcs
function that do not properly perform in-
dexing of a function-pointer table during
the loading of keyboard layouts from disk.
Malicious code in this case is executed by
the CALL _aNLSVKFProc[ecx*4] instruction.

Due to forged index value the code flow is
redirected to 0x60636261. Contents of the
memory located at this specific address can
be controlled by the attacker. Tests showed
that our tool detects and prevents successful
exploitation of this vulnerability.

Most of the others local privilege escalation
exploits are unable to work at the very first stage.
This is caused by the mitigation that was described
in the section 2.2.1.

As a “side effect” our apparatus is able to
detect some cases of hidden malicious code that
operates at the kernel level (like rootkits or
bootkits).

3.2 Performance
Following section presents the performance results
of our tool. It is divided into two subsections.
Where first one describes the performance of the
integration module and the second one focuses on
testing the protected operated system itself.

3.2.1 Integration performance

Table 1 presents the results obtained by inte-
grating original Microsoft Windows 7 files (listed
below). This test was performed on T3400 2.16Ghz
(Core2) notebook machine with 2.46GB of RAM.
Modules (files) presented in the table were chosen
specifically due to potential security threats they
create. This does not mean our tool is not able to
protect other modules.

The legend for Table 1 is as follows:

• Sizeorg - original file size,

• Sizeint - file size after integration,

• Tdisasm - time required for disassembling the
selected file7,

• Tbasicblock - time required for creating basic
blocks from the disassembly information

• Tint - time required for instrumenting, repair-
ing and generating new code8.

7Does not include time required for downloading symbol
file etc.

8Does not include time required for emitting the PE file.

5



Presented results indicate that the integration
process is more than satisfactory in terms of speed
and memory usage. Results also show that typi-
cally newly generated files are twice as large as the
original ones. This is natural considering the mod-
ifications we have applied. As it was mentioned
earlier (see Section 2.1.2), our integration engine
may also work on external machines. This gives
user the opportunity to perform the binary rewrit-
ing process remotely.

3.2.2 System performance

In the system performance testing we have used our
own custom benchmarking tool and also two other
solutions for Microsoft Windows systems (Nov-
aBench version 3 [10] and PerformanceTest 7 [11]
evaluation version).

Benchmarked machine configuration: Intel
Core2 Q9550 2.83GHz; 3327 MB RAM; ATI
Radeon HD 5870; Windows 7 (32-bit).

Our benchmark results are presented in Table
2, NovaBench results are presented in Table 3.
PerformanceTest benchmark results are presented
in Table 4.

The legend for Table 2 is as follows:

• P1 - protected machine (full instrumentation),

• Ps1 - slowdown (P1 versus native configura-
tion),

• P2 - protected machine (skipped RET instruc-
tion instrumentation in win32k.sys - other-
wise full instrumentation),

• Ps2 - slowdown (P2 versus native configura-
tion).

Each benchmark program tend to produce re-
sults that vary during each system run. Our cus-
tom benchmarking tool executes four types of tests.
The Process Test works by creating 100 instances
of calc.exe program. The time is measured un-
til all of the created processes are fully initialized.
The Write File Test creates 100 10MB files and
fills them with constant data. The Read File Test

Table 2: Custom benchmark results on native and
protected systems.

Test Native
[s]

P1
[s]

Ps1
[%]

P2
[s]

Ps2
[%]

Process 3.44 5.53 60.68 4.22 22.43
Write File 7.32 7.73 5.62 7.57 3.39
Read File 2.27 2.28 0.49 1.98 -12.88
Memory 0.65 0.73 12.29 0.71 9.84

Table 3: NovaBench 3 results on native and pro-
tected system (higher number the better).

Test Native
system

Protected
system

RAM Speed (MB/s) 4203 4178
Floating Point (ops/s) 102153392 102077740
Integer (ops/s) 333407424 333462560
MD5 Hashes (gen/s) 929197 924222
CPU Score 403 403
Graphics Tests Score 494 481
Drive Write Speed
(MB/s)

79 70

Hardware Tests Score 30 28
NovaBench Score 1030 1014

works in analogical way. In both cases time is mea-
sured until all files are processed. Last test (Mem-
ory Test) allocates (commits) 100 memory regions
each 100MB wide, fills them with constant data
and finally frees the committed regions. Time is
measured until this process is finished for all the
regions. Each test was performed 5 times for both
protected and unprotected configurations (5 sam-
ples were taken for each configuration). The arith-
metic mean of the results was used in the compar-
ison process.

Our benchmark showed that the largest perfor-
mance impact was observed in the Process Test.
The slowdown in this case was approximately 60%
(P1 case). As it was mentioned already Process
Test rest on creating 100 calc.exe processes. In
case of the P2 configuration the slowdown was lim-
ited to about 22%. The only difference between
P1 and P2 configuration was that P2 configuration
skipped the RET instrumentation in the win32k.sys

6



Table 1: Static binary rewriting performance depending on a various files.

File Sizeorg

[MB]
Sizeint

[MB]
Tdisasm

[sec]
Tbasicblock

[sec]
Instructions
[#]

Basic
blocks [#]

Memory
usage [MB]

Tint

[sec]
afd.sys 0.323242 0.628418 0.089667 0.064936 80506 20250 19.222656 0.077218
http.sys 0.489258 0.942383 0.135878 0.132798 120746 30186 27.746094 0.135387
mrxsmb.sys 0.117676 0.241699 0.042676 0.042676 31537 7868 9.316406 0.033276
ndis.sys 0.677795 1.339844 0.198545 0.320212 168001 42421 37.218750 0.169197
ndistapi.sys 0.020020 0.035645 0.004350 0.002852 4289 1062 5.316406 0.003737
ndproxy.sys 0.045898 0.089844 0.016023 0.008206 11744 2889 5.593750 0.011264
netbios.sys 0.034668 0.068848 0.009053 0.007547 9142 2538 5.304688 0.008585
netbt.sys 0.179199 0.377441 0.057341 0.048043 53761 13383 13.437500 0.054077
ntkrnlpa.exe 3.773804 8.202148 1.332446 1.082007 998898 259320 221.421875 5.808912
ntoskrnl.exe 3.721069 8.085449 1.310291 1.075641 982377 256603 218.273438 6.477548
smb.sys 0.067871 0.133301 0.018859 0.013599 17767 4387 12.523438 0.017782
srv2.sys 0.295410 0.520508 0.060904 0.051449 58071 14643 16.945313 0.057214
srv.sys 0.296875 0.639160 0.089117 0.075273 82425 21662 21.957031 0.092641
tcpip.sys 1.226440 2.475098 0.411125 0.499790 335331 79187 72.378906 0.344304
tdi.sys 0.020020 0.041016 0.004489 0.002879 4348 1110 13.511719 0.004962
win32k.sys 2.223145 4.992676 0.952298 0.981985 673535 175847 147.082031 4.389956

module. This device driver is a major component
of the Windows GUI subsystem. Since calc.exe is
a GUI process we assume that the negative perfor-
mance impact was specifically caused by the graph-
ical interface initialization for this process. Like-
wise in the Passmark benchmark, protected sys-
tem causes some negative performance effect on
2D graphics tests (Table 4). This is also espe-
cially caused by instrumented win32k.sys module.
We have made another test. We have skipped the
RET instruction instrumentation again and the per-
formance results were significantly improved. Ac-
cording to the rest of the benchmarks results there
is also a slight overall performance impact regard-
ing memory allocation, disk read, disk write op-
erations (albeit it is not as prominent as the im-
pact on 2D graphics performance). Furthermore
our benchmark (Table 2) indicated that in the Read
File Test (P2 configuration) our performance was
almost 13% better in comparison to the native ma-
chine. However this may be caused by the Windows
file caching mechanisms.
Future versions of the engine should address the

performance issues. We have already presented
optimization ideas (section 4) that should signifi-
cantly improve the overall performance in the fu-

ture. We also plan improve the effectiveness of our
solution without skipping the RET instrumentation.
Additionally it is also worth noticing that perfor-
mance slowdowns presented in our benchmarks are
often not widely manifested.

4 Future Work

Currently our system is in proof-of-concept state.
We are planning to extend it into two general direc-
tions. In order to improve performance we want to
instrument only those areas that represent a high
security threat (right now we are instrumenting all
of them without evaluating the security threat). In
the case of RET instructions this work is easier since
Windows supports kernel stack cookies (starting
from Microsoft Windows XP). Therefore such in-
structions can be left not instrumented. Additional
work should be done in order to limit the number
of control transfers to the callback functions — this
should improve the efficiency of the CPU instruc-
tion cache. Due to nature of Microsoft Windows
updates that usually ship every month we need to
monitor whether selected module was changed by

7



Table 4: PerformanceTest 7 results on native and
protected system (higher number the better).

Test Native
sys-
tem

Protected
system

CPU - Integer Math 547.0 543.4
CPU - Floating Point Math 2129.9 2131.4
CPU - Find Prime Numbers 1157.6 1155.6
CPU - Multimedia Instruc-
tions

9.6 9.6

CPU - Compression 6306.5 6310.5
CPU - Encryption 17.9 17.9
CPU - Physics 314.3 313.1
CPU - String Sorting 3634.2 3642.8
Graph2D - Solid Vectors 3.9 2.5
Graph2D - Transparent Vec-
tors

3.8 2.4

Graph2D - Complex Vectors 93.0 50.5
Graph2D - Fonts and Text 113.1 63.4
Graph2D - Windows Inter-
face

68.7 36.3

Graph2D - Image Filters 415.9 408.6
Graph2D - Image Rendering 289.3 272.2
Graph3D - Simple 3568.4 2963.7
Graph3D - Medium 843.9 843.3
Graph3D - Complex 81.8 77.7
Graph3D - DirectX 10 55.8 55.7
Memory - Small Block Alloc 2767.4 2747.3
Memory - Read Cached 2195.2 2195.0
Memory - Read Uncached 2027.7 2021.7
Memory - Write 2095.3 2082.5
Memory - Large RAM 1177.9 1076.1
Disk - Sequential Read 86.2 85.6
Disk - Sequential Write 85.7 90.2
Disk - Random Seek + RW 3.5 3.4
CPU Mark 3727.8 3726.1
2D Graphics Mark 475.2 318.5
Memory Mark 872.1 843.9
Disk Mark 634.2 648.3
3D Graphics Mark 2749.8 2584.6
PassMark Rating 1612.4 1366.3

the update or not9. If so it needs to be rewritten
again. Easy file recovery method is also in plans.

Another direction involves expanding the secu-
rity policy. In this case the one presented in [9]
(or rather some parts of it we have found most
interesting) can be accommodated. For example
allowing indirect calls to target only valid entry
points within other modules. Another idea is to
statically predict whether selected function is used
only locally (within the selected module) and de-
sign the security policy for this function accord-
ingly. For example (in case of function return) all
control transfers to places outside the current mod-
ule from this function epilogue will be forbidden.
Similar ideas can apply to other instructions that
cause indirect control flow transfers. Additionally
to prevent return-oriented programming (ROP) at-
tacks [17, 6, 5] we can emit magic bytes (a key) for
every function call and check it when the function
returns [12, 14]. Further mitigations for return-
oriented programming attacks may involve generat-
ing different file variants per machine and eradicat-
ing original code where possible. Regarding local
attacks it may be beneficial to disallow an unpriv-
ileged user from accessing system modules (kernel
and drivers). This includes any type of access.

In order to block potential clobbering of the
memory map by the attacker it may be beneficial
to store it at read-only memory region. This ac-
tion would require to change the memory rights to
writable only when kernel module is loaded or un-
loaded from the memory. Thus it shouldn’t cause
any serious performance impact.

It is possible to port our solution to x86-64 ar-
chitectures. However it is important to notice that
on x64 platforms Microsoft has introduced a new
feature, called PatchGuard that is intended to pre-
vent both malicious software and third-party ven-
dors from modifying certain critical operating sys-
tem structures. Even though this security mecha-
nism is bypassable [18, 7] one may wonder whether
is it worth to disable one security feature for the
sake of another.

9Typical Microsoft updates involve relatively small num-
ber of kernel modules updates.

8



Acknowledgments
Author would like to thank Brad Spengler and
Matt Miller for helping with this article.

5 Conclusion
This paper presents a method for securing the ker-
nel of the operating system (in this case Microsoft
Windows). Our engine uses static binary rewrit-
ing and code instrumentation techniques in order
to monitor the control flow. We have shown that
our protection is capable of detecting and blocking
both remote (especially) and local attacks. Our so-
lution, however, does not prevent against exploits
that overwrite sensitive data and it also does not
protect against vulnerabilities in 3rd party kernel
modules (besides the technique presented in section
2.2.1).
We have also described techniques and ideas that

may be implemented in the future. Performance
impact together with operating system benchmarks
was also presented. We believe that currently our
solution provides a unique security solution for the
Microsoft Windows kernel and does not require any
special hardware features. Of course this mech-
anism cannot solve every security problem com-
pletely but it does make kernel exploitation much
harder.

References
[1] Piotr Bania. Aslan (4514N) Metamorphic

Engine. http://www.piotrbania.com/all/
4514N/, 2006.

[2] Piotr Bania. SpiderPig - The Data Flow Tracer
Project Homepage. http://www.piotrbania.
com/all/spiderpig, 2008.

[3] CVE Database. CVE-2009-3103.
http://www.cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-3103.

[4] CVE Database. CVE-2010-2743.
http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2010-2743.

[5] Dino A. Dai Zovi. Practical Return-Oriented
Programming. http://trailofbits.files.
wordpress.com/2010/04/practical-rop.
pdf.

[6] Erik Buchanan, Ryan Roemer, Ste-
fan Savage, Hovav Shacham. Return-
oriented Programming: Exploita-
tion without Code Injection. https:
//www.blackhat.com/presentations/
bh-usa-08/Shacham/BH_US_08_Shacham_
Return_Oriented_Programming.pdf.

[7] Fyyre. Disable PatchGuard - the easy/lazy
way. http://fyyre.ivory-tower.de/txt/
bootloader.txt.

[8] Hex-Rays. Interactive Disassembler Pro.
http://www.hex-rays.com/idapro/.

[9] Vladimir Kiriansky, Derek Bruening, and
Saman P. Amarasinghe. Secure execution
via program shepherding. In Proceedings of
the 11th USENIX Security Symposium, pages
191–206, Berkeley, CA, USA, 2002. USENIX
Association.

[10] Novawave Inc. NovaBench 3. http://
novabench.com.

[11] PassMark Software. PerformanceTest 7. http:
//www.passmark.com.

[12] PaX Team. Pax Future. http://pax.
grsecurity.net/docs/pax-future.txt.

9

http://www.piotrbania.com/all/4514N/
http://www.piotrbania.com/all/4514N/
http://www.piotrbania.com/all/spiderpig
http://www.piotrbania.com/all/spiderpig
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3103
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3103
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2743
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2743
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
http://fyyre.ivory-tower.de/txt/bootloader.txt
http://fyyre.ivory-tower.de/txt/bootloader.txt
http://www.hex-rays.com/idapro/
http://novabench.com
http://novabench.com
http://www.passmark.com
http://www.passmark.com
http://pax.grsecurity.net/docs/pax-future.txt
http://pax.grsecurity.net/docs/pax-future.txt


[13] Piotr Bania. AutoDiff - Automated Bi-
nary Differential Analysis Project. http://
autodiff.piotrbania.com.

[14] Piotr Bania. Security Mitigations for
Return-Oriented Programming Attacks.
http://piotrbania.com/all/articles/
pbania_rop_mitigations2010.pdf.

[15] Piotr Bania. SMB2: 351 Pack-
ets from the Trampoline. http:
//blog.metasploit.com/2009/10/
smb2-351-packets-from-trampoline.html.

[16] Ruben Santamarta. Stuxnet MS10-
073/CVE-2010-2743 Exploit. http:
//reversemode.com/index.php?option=
com_content&task=view&id=71&Itemid=1.

[17] Hovav Shacham. The geometry of innocent
flesh on the bone: Return-into-libc without
function calls (on the x86). In Sabrina De Cap-
itani di Vimercati and Paul Syverson, editors,
Proceedings of CCS 2007, pages 552–61. ACM
Press, October 2007.

[18] Skape and Skywing. Bypassing PatchGuard
on Windows x64. http://www.uninformed.
org/?v=3&a=3.

[19] VUPEN Vulnerability Research Team. Tech-
nical Analysis of the Windows Win32K.sys
Keyboard Layout Stuxnet Exploit.
http://www.vupen.com/blog/20101018.
Stuxnet_Win32k_Windows_Kernel_0Day_
Exploit_CVE-2010-2743.php.

[20] Wikipedia. Stuxnet worm. http://en.
wikipedia.org/wiki/Stuxnet.

10

http://autodiff.piotrbania.com
http://autodiff.piotrbania.com
http://piotrbania.com/all/articles/pbania_rop_mitigations2010.pdf
http://piotrbania.com/all/articles/pbania_rop_mitigations2010.pdf
http://blog.metasploit.com/2009/10/smb2-351-packets-from-trampoline.html
http://blog.metasploit.com/2009/10/smb2-351-packets-from-trampoline.html
http://blog.metasploit.com/2009/10/smb2-351-packets-from-trampoline.html
http://reversemode.com/index.php?option=com_content&task=view&id=71&Itemid=1
http://reversemode.com/index.php?option=com_content&task=view&id=71&Itemid=1
http://reversemode.com/index.php?option=com_content&task=view&id=71&Itemid=1
http://www.uninformed.org/?v=3&a=3
http://www.uninformed.org/?v=3&a=3
http://www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_Exploit_CVE-2010-2743.php
http://www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_Exploit_CVE-2010-2743.php
http://www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_Exploit_CVE-2010-2743.php
http://en.wikipedia.org/wiki/Stuxnet
http://en.wikipedia.org/wiki/Stuxnet

	1 Introduction
	2 Design
	2.1 Integration module
	2.1.1 Analyzer module
	2.1.2 Rewriting module

	2.2 Monitoring module
	2.2.1 Mitigation technique for local privilege escalation attacks
	2.2.2 Detecting exploitation attempts
	2.2.3 Reaction to attack

	2.3 Configuration module
	2.4 Installer module

	3 Experimental results
	3.1 Effectiveness
	3.2 Performance
	3.2.1 Integration performance
	3.2.2 System performance


	4 Future Work
	5 Conclusion

