
Fast, Reliable and Runtime Protection Method Against Table

Index Overflows

Piotr Bania

www.piotrbania.com

2011

Abstract

Recent security vulnerabilities show that bugs
caused by insufficient or lack of boundary checks on
table index variables are still very common. Suc-
cessful exploitation of such bugs may lead to total
system compromise just like it ended in the Mi-
crosoft SRV2.SYS SMB Negotiate ProcessID Func-
tion Table Dereference vulnerability [3, 4].

In order to protect against such attacks, we have
developed a solution which decreases the probabil-
ity of successful exploitation by the attacker. We
are able to achieve this goal with by calculating
(estimating) the table boundaries and monitoring
the table index as the application executes. Our
solution does not require program source code and
can be implemented for both user mode and kernel
mode programs. Currently the prototype works on
IA-32 compatible processors.

1 Design

Our solution has only one small requirement
it requires that the selected module (Portable
Executable (PE) file) must have an relocation
directory. This is not really any major obstacle
since most of the currently deployed applications
have relocation directories - all kernel mode must
have relocation directories - and due to nowadays
security requirements all of them should (for
example in order to be compatible with Address
Space Layout Randomization security mechanism
(ASLR)).

Following points presents the main algorithm of
our solution:

1. Detect all already loaded and any further
loaded Portable Executable modules

2. Each of the find modules will be then tested
for compatibility issues

3. If a compatible module is found it is being
tested for the occurrence of instructions that
utilize specific type of x86 addressing mode
(table index)

4. If a correct instruction is found the table
boundaries are being calculated (up and down
limit)

5. If both of the previous steps were success the
instruction is then instrumented

1.1 Instruction Detection

In order to work our solution needs to find all in-
structions that use specific type of x86 addressing
mode (table index). Since we need to do that reli-
ably the typical solution requires to disassemble en-
tire Portable Executable file. However this method
is slow and the code coverage is often poor. An-
other potential solution to this problem is to use
some dynamic binary instrumentation engine like
Pin [2] or DynamoRIO [1]. However they are not
really useful due to similar performance issues. In
order to provide a fast and reliable solution we are
using our own custom method that is not so re-
source consuming and does not cause any notice-
able performance impact.

First step of our tool is to provide entry points
for the backward disassembler. To reliably conduct
the process we limit our search to the executable
sections of selected module which obviously should

1

http://www.piotrbania.com


be the typical region where the instructions reside
(and can be executed). In order to get the poten-
tial entry points we iterate over the relocation di-
rectory. Since most of the instructions that refer to
tables are obliged to use virtual addresses encoded
as operands. In other words all of such operand
locations are stored in the relocation table. From
such locations we perform the backward disassem-
bly process. It is very considerable to notice that
the disassembly process can be in fact limited to the
simple signature matching algorithm, which should
be faster. In the current stage of our tool we are
only searching for instructions like:

• mov reg, [indexREG*4 + tableVA]

• call dword ptr [indexREG*4 +tableVA]

• jmp dword ptr [indexREG*4 +tableVA]

However it doesn’t mean that other instruc-
tions (or instructions with different scaling factor)
cannot be protected. Following instructions were
picked because there are typically the ones that
cause potential security risk.

1.2 Calculating the table boundaries

Calculating the table boundaries or rather estimat-
ing is the second main step that ensures that our so-
lution will work correctly without introducing false-
positives alerts. At first glance it appears to be an
easy task however it is not. There are to possible
methods to estimate the table boundaries at this
point.

First one bases on a fact that typically all of such
tables should be filled with a relocable entries. In
other words another set of virtual addresses. There-
fore one can assume that iterating from the begin-
ning of the table (up and down) should end when
the nonrelocable entry is found. However once
again this solution is far from being perfect and
it causes a lot of false-positive alerts since some of
the tables do not respect mentioned conditions.

Second method which is far more reliable and
currently implemented in our solution is based on
different approach. When new Portable Executable
module is processed our engine creates a map of a
regions that are requested by the relocation direc-
tory plus the entire PE is scanned for known exe-
cutable code signatures (C prologue, C epilogue).

When estimating the table range upward (to the
lower address) we continue the scan until either a
requested region is found or an executable code sig-
nature. We mark this regions as the upper table
limit. However when scanning downward (to the
higher address) we calculate the number of found
requested regions. When the counter exceeds our
const safety value we stop the scanning procedure
and mark the current location as the table end.
However if the executable code is found or we have
reached the end of current PE section we stop the
scan immediately also with marking the current lo-
cation as the bottom table limit. There is one ex-
ception to this rule. When the virtual address of
the table points to the region that is not initialized
before the module runs (so out of the raw data) we
simply mark the end of the current PE section as
the end of the table. At first glance this limit ap-
pears to be very high but it often enough to termi-
nate successful attempts of vulnerability exploita-
tion.

1.3 Instrumentation

Instructions that have an immediate 32-bit reloca-
ble operands posses one great factor. They occupy
minimum 5 bytes of memory (one minimum byte
for instruction operand plus 4 bytes of the reloca-
ble offset). It is important since at this point we can
freely patch it with 5 byte relative jump (trampo-
line) without potentially corrupting other instruc-
tions and finally crashing the application. In our
case the instructions we are interested in are always
7 bytes in size. Each instruction that is considered
valid and has a calculated table boundaries is then
hooked. From this point the control flow is redi-
rected to a small memory land that dynamically
checks whether request exceeded the table bound-
aries or not. This is all done before the original in-
struction gets executed. If the request violates the
boundary limits it is reported as an exploitation
attempt and the application is terminated. Other-
wise the application execution continues.

2 Drawbacks

Some instructions may use different indexing
method which cannot be protected in the same
manner as we have presented here. However they

2



are not common as the ones presented in this arti-
cle.

References

[1] DynamoRIO. http://www.cag.lcs.mit.edu/

dynamorio/.

[2] Pin. http://rogue.colorado.edu/pin/.

[3] CVE Database. CVE-2009-3103. http://

www.cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2009-3103.

[4] Piotr Bania. SMB2: 351 Pack-
ets from the Trampoline. http://

blog.metasploit.com/2009/10/

smb2-351-packets-from-trampoline.html.

3

http://www.cag.lcs.mit.edu/dynamorio/
http://www.cag.lcs.mit.edu/dynamorio/
http://rogue.colorado.edu/pin/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3103
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3103
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3103
http://blog.metasploit.com/2009/10/smb2-351-packets-from-trampoline.html
http://blog.metasploit.com/2009/10/smb2-351-packets-from-trampoline.html
http://blog.metasploit.com/2009/10/smb2-351-packets-from-trampoline.html

	1 Design
	1.1 Instruction Detection
	1.2 Calculating the table boundaries
	1.3 Instrumentation

	2 Drawbacks

