
Security Mitigations for Return-Oriented Programming Attacks

Piotr Bania

www.piotrbania.com

2010

Abstract

With the discovery of new exploit techniques, new
protection mechanisms are needed as well. Mit-
igations like DEP (Data Execution Prevention)
or ASLR (Address Space Layout Randomization)
created a significantly more difficult environment
for vulnerability exploitation. Attackers, however,
have recently developed new exploitation methods
which are capable of bypassing the operating sys-
tem’s security protection mechanisms.

In this paper we present a short summary of
novel and known mitigation techniques against
return-oriented programming (ROP) attacks. The
techniques described in this article are related
mostly to x86-321 processors and Microsoft Win-
dows operating systems.

1 Introduction

In order to increase the security level of the op-
erating system, Microsoft has implemented several
mitigation mechanisms, such as DEP and ASLR.
Data Execution Prevention (DEP) is a security fea-
ture that prohibits the application from executing
code from non-executable memory area. To ex-
ploit a vulnerability, an attacker must find a ex-
ecutable memory region and be able to fill it with
necessary data (e.g., shellcode instructions). Gen-
erally, achieving this goal using old exploitation
techniques is made significantly more difficult with
the addition of the DEP mechanism. As a result,
attackers improved upon the classic “return-into-
libc” technique and started using return-oriented

1Some of the techniques can be also applied on other ar-
chitectures, albeit some of them are only available for x86-32
family (e.g., the ones based on creating new segment descrip-
tors).

programming (ROP) [3, 7] to bypass Data Execu-
tion Prevention.

Techniques like ROP are still based on the at-
tacker understanding memory layout characteris-
tics, leading Microsoft to implement Address Space
Layout Randomization (ASLR) as a countermea-
sure. ASLR renders the layout of an application’s
address space less predictable because it relocates
the base addresses of executable modules and other
memory mappings. In order to bypass DEP protec-
tion mechanism ROP technique was introduced. In
this article we present novel and known mechanisms
which are created specifically to prevent attackers
from exploiting vulnerabilities based on the ROP
method. Presented mitigations will be divided in
two general categories:

• Compiler-level mitigations — mitigations that
can be only applied by the compiler or linker.

• Binary-level mitigations — mitigations that
can be applied without knowing the source
code of the protected code fragment.

2 Return-oriented Program-

ming

Return-oriented programming is a known exploita-
tion technique which allows the attacker to use
stack memory to indirectly execute previously
picked instructions (so called gadgets). Typically
each gadget ends with the x86 subroutine return
instruction2 (RET), which further transfers the ex-
ecution to the next gadget or the payload itself.
For more information regarding the return-oriented
programming technique please refer to [1, 3, 7].

2However other instructions may be used as well like jmp

reg, call reg etc.

1

http://www.piotrbania.com

3 Compiler-level mitigations

In this section we present ROP protection mecha-
nisms which can be applied at the compiler-level.
However this doesn’t mean they are not imple-
mentable at the binary-level - they are simply sub-
stantially easier to implement at the compiler-level.
We will also try to underline advantages and dis-
advantages of described mechanisms.

The biggest disadvantage of compiler-level miti-
gations is the fact that they require code recompi-
lation in order to be effective. It is often hard to
quickly implement such kind of changes in the real
world.

3.1 Call-Ret relations

As previously stated, most gadgets use return
instructions to transfer execution control to an-
other gadget or payload. In order to find useful
gadgets, attackers scan the process memory or the
binary module for return instruction opcodes and,
after such opcode is found, they try to perform
backward disassembly in order to decide whether
following gadget is useful (correct) or not. Return
instruction opcodes can often be found in the
middle of different instructions. Results, how-
ever, show that most of the time original return
instructions RET are used. Typically they also
represent the highest number of return opcodes
found in the entire module’s executable area
(cf. Figure 1). For the remainder of this article
RET instructions emitted in the original program’s
code will be named as “original return instruction”.

3.1.1 Testing for CALLs

In typical applications, every procedure (function)
is executed by using call-procedure instruction. Ev-
ery CALL instruction saves procedure linking infor-
mation on the stack and branches to the procedure
specified by the destination operand. Our ROP
mitigation technique relies on a fact that each re-
turn address popped from the stack by the RET in-
struction is preceded by CALL instruction. When
a ROP attack occurs the return address points to
another gadget (or finally a payload). It is unlikely
that an attacker will be able to pick the return ad-
dresses preceded by CALL instruction operands (see

Figure 1: RET opcode offsets in sample modules
(offset equal to 1 indicates that this is an original
RET instruction).

2

Table 1 for details). Testing for CALL instructions
located before the return address popped from the
stack should be a reliable method against ROP at-
tacks.

Module Name N1 [#] N2 [#]
ntdll.dll 6528 138 (2.11%)
ieframe.dll 45232 2109 (4.66%)
bib.dll 5966 317 (5.31%)
aswEngin.dll 50895 1547 (3.03%)

Table 1: Number of gadgets preceded by rela-
tive, memory indirect, register indirect procedure-
call instruction ("minimal/not extended" address-
ing mode assumed).

Where:

• N1 represents total number of gadgets

• N2 represents number of gadgets preceded by
the procedure-call instruction

• gadget represents a valid single instruction or
sequence of instructions without any special
filtering applied regarding the gadget useful-
ness

However, the method itself has some drawbacks.
CALL instructions can be encoded in various ways
(relative, absolute, indirect), which can influence
the scanner’s performance and also the potential
reliability of this method. Secondly, only origi-
nal return instructions can be protected. In other
words, using different instructions (like indirect
jumps or calls) for linking gadgets will be not
detected. On the other hand, the CALL opcode
checking method can be based on opcode-frequency
statistics, which could decrease the potential per-
formance slowdown. Additionally, since only spec-
ified (valuable for attacker) return instructions can
be protected, this should have a positive influence
for the program’s performance.

3.1.2 Emitting magic values

This method was introduced by the Pax Team [5]
and it relies on emitting magic bytes after every
CALL instruction and testing them at the function
epilogue, as shown in Listing 1.

This method seems to be more reliable than the
method described in Section 3.1.1, although it also

callee

epilogue :

mov register ,[esp]

cmp [register +1], MAGIC

jnz .1

retn

.1: jmp esp

caller :

call callee

test eax ,MAGIC

Listing 1: Protection of the execution flow changes
via the return instructions.

has some major drawbacks. First of all, the TEST

instruction isn’t neutral for the application con-
text’s state, since the EFLAGS register is modified by
this instruction. This flaw3, however, can be easily
fixed by simply emitting JMP OVER_MAGIC instruc-
tion after each CALL. A more serious limitation of
this method is the fact that every module used by
the application would have to be created (compiled
and linked) with the same MAGIC value. This is
necessary since execution transfers may occur from
one module to another4.

Since this approach would be almost impossible
to implement in the real world there is another so-
lution which can be used here. We propose that
Windows’ Portable Executable loader be responsi-
ble for synchronizing every MAGIC value after each
system boot (and after specified module is loaded).
This would of course require creating a new section
(or some new, specific data directory) with all the
MAGIC values offsets that should be updated by the
executable loader.

3.2 Obfuscating instructions

This approach addresses the problem where the RET

instruction opcode is a part of different instruction
(typically it is located among the first 1-3 bytes,
not including instruction opcode). Owing to our
tests and external sources [7] most of such opcodes
are found in the ModR/M byte. A second large
source of RET opcodes is found in immediate dis-

3Whether this is a flaw or not depends mostly on the
application binary interface; in most cases the caller is re-
sponsible for saving the flags.

4Modules that don’t perform execution transfers to other
modules can be left “unsynchronized”.

3

placements. In order to prevent from effectively
using such cases in the ROP attack we propose
that every instruction with RET opcode inside of
its body will be obfuscated in a special manner.
Of course control transfer instructions or any other
instructions that use immediate data offsets are an
exception to this rule since the immediate displace-
ments are calculated by the linker. The potential
obfuscation can be done in following fashion:

• If RET opcode is found in the first byte after
the original instruction opcode, a jump land
should be emitted just before this instruction.
Such jump land should consist of a short un-
conditional jump instruction and a land (up
to 16 bytes) of INT3 or other worthless for at-
tacker single byte instructions. Such emitted
instructions will never be executed by the orig-
inal program flow because of the unconditional
jump, which transfers the execution directly
to the potentially dangerous instruction. Such
action should decrease the number of effective
gadgets used for creating the ROP chain.

• If RET opcode is spotted in immediate constant
values such instruction should be obfuscated
for example by splitting ADD REG,IMM32 into
two ADD instructions where the IMM32 operand
for both of them would be free of return in-
struction opcodes. Of course special care must
be taken regarding the EFLAGS register state
after each such transition.

• If RET opcode is found in ModR/M byte,
which indicates using EAX register as desti-
nation operand and EBX register as source
operand (e.g., MOV EAX,EBX), such instructions
can be transformed into equivalent form which
doesn’t include return instruction opcodes.
For example MOV EAX,EBX ↔ PUSH EBX; POP

EAX (0x53 0x58).

As previously mentioned, the presented solutions
can only be applied to instructions that do not use
immediate displacements, as those are handled by
the linker.

4 Binary-level mitigations

In this section we present mitigations against ROP
attacks that can be applied without any informa-

1: mov esp ,eax

ret

2: xchg eax , esp

ret

3: add esp ,<number >

ret

Listing 2: Typical stack pivot sequences.

tion of the program’s original source code. All miti-
gations included in this section can be implemented
at the binary-level.

4.1 Stack Encapsulation

To make a ROP attack work, the attacker must be
able to point the stack pointer into the controlled
data. In typical stack-buffer overflow vulnerabili-
ties this is not needed, but in other vulnerabilities
(e.g., heap-overflow) this is often a must. In order
to achieve this goal, the attackers use the so called
stack pivot sequence [1]. Listing 2 shows some com-
monly used stack pivot sequences. Our mechanism
tries to take advantage of this information.

When a new thread is created, operating systems
reserve some necessary space for its stack memory.
Stack borders are described in the INITIAL_TEB

structure which is passed in one of parameter of
NtCreateThread function. Additionally stack bor-
ders are also available in the Thread Information
Block (FS:[0x04] - top stack, FS:[0x08] - current
bottom stack). When the attacker uses the pivot
sequence he typically exceeds the stack border lim-
its set by the thread initialization procedure. The
methods described in the following sections were
designed to recognize this behavior. Similar sup-
port must be taken when dealing with fibers, since
they also use separate stacks.

4.1.1 New stack segment descriptor

Microsoft Windows systems allow usermode appli-
cations to create their own local descriptor table
(LDT). Most current operating systems use the flat
memory model, where there is no need to create
additional segments for every running application.
This would be in fact a step back to the old seg-
mented memory model. On Windows platforms, in
usermode, all segments’ base addresses are equal to

4

xor eax ,eax

lea edi ,[esp+VALUE]

stosd

stosd

...

Listing 3: Typical program instructions.

zero, except the one pointed by the FS register (the
GS segment register is not used5). In our mitiga-
tion mechanism we have developed two approaches
that protect the system against the stack pivoting
technique. Our initial technique was to create a
stack segment descriptor each time new a thread
is created with a base address equal to the stack
bottom and limit corresponding to stack size. Af-
ter the new segment is created we initialize the SS

segment register with a new value.

This method however has a big drawback, which
is explained on the listing below (Listing 3).

The LEA instruction is responsible for initializ-
ing the EDI register with the effective address of
ESP+VALUE. However, the value that will be stored
in the EDI register is still relative to the stack seg-
ment base address (which is not null in our case).
The problems start with instructions that don’t use
the SS segment register for addressing purposes.
For example, the STOSD instruction uses the ES seg-
ment register; its execution will end with an ac-
cess violation, since the base address of the seg-
ment pointed by ES segment register is different.
In other words the LEA instruction does not honor
the segment registers when calculating the effective
address.

To resolve this issue we were forced to change the
base address of the newly created stack segments.
To avoid unnecessary access violations, the stack
segment base address was set to zero and its limit
was set to the stack’s top value. This has some dis-
advantages, since the attacker would need to initial-
ize new stack pointer value with an address higher
than the segment limit to trigger the mechanism.
Most of the time, however, newly allocated buffers
have higher addresses since the thread’s stack mem-
ory allocation was done earlier (there are a few ob-
vious exceptions to this rule). Each time the at-
tacker tries to exceed the boundaries of the current
stack segment a general protection fault occurs and,

5This is true for x86-32 architectures only

at this point, our filtering procedure decides if the
selected process is being exploited and needs to be
terminated.

As a side note, there is one small problem with
this method. Instructions that use the EBP regis-
ter for memory addressing are also using the stack
segment specified by the current segment selector.
This means that if the EBP is not related to the
stack memory and the destination address exceeds
the stack segment boundaries a general protection
fault will occur. Such cases however can be eas-
ily filtered and the execution can be resumed after
emulating the faulting instruction.

Countermeasures In order to bypass the stack
encapsulation protection, an attacker would need
to initialize the stack pointer with a lower memory
address than the stack’s top value. For example at-
tacker can heap-spray the memory and then cause
the application to create a new thread that will be
used to trigger the vulnerability. By doing this at-
tacker fake stack will be below the stack base. An-
other way would be to execute a gadget that reini-
tializes the stack segment with the original value
(constant between Windows versions) by, for ex-
ample, executing a POP SS instruction. To disable
this attack we are constantly monitoring the value
of the SS segment register, and we reinitialize it ev-
ery time execution returns from a system call (since
kernel reinitializes the segment registers values be-
fore the control is returned to the usermode).

4.1.2 Monitoring stack pointer changes

Another approach for detecting the stack pivoting
technique is to monitor the stack pointer value at
crucial areas. For example, instead of setting an-
other segment for stack space we can hook impor-
tant offensive API functions (e.g., VirtualAlloc,
VirtualProtect) and test the stack pointer value
there. Obviously, there is no guarantee that the
attacker wouldn’t be able to restore the original
stack pointer before using such API functions. To
improve the security level of this protection mech-
anism we also propose that newly allocated mem-
ory regions (or memory regions with changed page
protection rights) with executable pages should be
marked as non-executable6. Now the page marked

6this requires having a CPU with NX bit support

5

as non-executable by our mechanism will work as a
decoy. If the processor is trying to execute the non-
executable page (page protection was previously
changed by our mechanism) then we firstly apply
our filtering procedure which tests the stack pointer
value. If everything is correct, the executable rights
are re-enabled and the execution is continued — the
entire mechanism works like a one-time decoy.

4.2 Code Encapsulation

The ROP technique, just like any other, has some
strategic points. One of those is the fact that the at-
tacker must know the virtual addresses of the used
gadgets. Because so, the ASLR mechanism success-
fully obstructs the exploitation process. However,
in some cases the attacked application is either not
compatible with ASLR or just uses external mod-
ules which do not support the ASLR mechanism.
There are also cases where the attacker is able to
leak or guess the wanted virtual address, rendering
the ASLR mechanism relatively easy to bypass. In
this section we present a mechanism which will take
advantage of this (ROP) technique’s weak spot.

As stated in Section 4.1.1, Windows systems al-
low usermode applications to create their own lo-
cal descriptor tables. In this mechanism we pro-
pose that each loaded module’s code in the appli-
cation’s address space (including the main mod-
ule) will have a separate segment for code sections7,
as Figure 2 shows. Each time a execution transfer
between modules or execution transfer using a full
virtual address (including module imagebase value)
occurs, a general protection fault will happen. At
this point the filtering procedure decides whether
this execution transfer attempt is valid or an attack
attempt.

This method has some drawbacks:

• A lot of control transfers are done through API
calls and since they require a code segment
switch a general protection fault is thrown ev-
ery time such action occurs. Since this has
a negative impact on the application’s per-
formance, entire import address table entries
should be redirected to specific API stubs as
shown in Listing 4.

7this mechanism is a bit similar to PaX SEGMEXEC [6]

Figure 2: Not-encapsulated and encapsulated mod-
ules inside of the process memory.

This solution should successfully decrease the
negative performance impact because of the
decreased number of GP faults. However, this
is only one aspect of the problem, since the re-
quested API must be able to return correctly
to the specified location which is outside the
current code segment. There are a few ways
to solve this issue. One of the potential so-
lutions can be based on faking the return ad-
dress in the API land stub and then recalculat-
ing the correct address when RET instructions
cause the GP fault. Every potential solution
here, however, will decrease the program per-
formance. Additionally, since API lands can
be only generated either before the base ad-
dress of the specified module or attached to
the end of it the code segment borders need
to be expanded as well (at least in cases that
don’t overwrite module’s memory).

• Special care must be taken when dealing with
case-switch offsets since they also contain vir-
tual addresses that don’t apply to the new
code segment limits. This issue can be par-
tially resolved with using module relocation
information and applying some heuristic scan-
ning mechanism. All case-switch offsets found
should be recalculated again and now point
to relative addresses. However, some modules
do not provide relocation information which
makes dealing with such cases hard and prob-
ably slow.

• Some Portable Executable modules like
SHELL32.DLL are pretty large (8MB - 16MB).
This causes some additional problems, since if

6

CALL DWORD PTR DS :[0 x406010]

original memory at 0 x406010 :

(ptr to user32.CreateWindowExA)

00406010 A9 E4 37 7E

patched memory at 0 x406010 :

00406010 dd offset api_land1

api_land1 :

jmp user32_cs : rel_offset

Listing 4: Example implementation of IAT redirec-
tion.

a function callback address located in differ-
ent module has a virtual address somewhere
between this 0-X MB range and some instruc-
tion will try to execute this virtual address
the mechanism will fault. This is caused be-
cause the function’s callback virtual address is
located within the limits of the current code
segment, and therefore the GP fault does not
occur. This is a major drawback since it will
likely lead to an application crash. Potential
workarounds for this issue would be to disallow
(or reserve) the memory located at the 0-X MB
range. However, this would require an inter-
action with the system’s Portable Executable
loader.

• As explained before, every time kernel returns
control to the usermode code segment regis-
ters are reinitialized with default values. Thus,
the protection mechanism needs to re-initialize
them as well each time such action happens.

• Additionally the number of segment descrip-
tors is limited however this is not a problem
for most of the applications since the number
of loaded modules is not high.

• Special care must be taken when dealing
with original code hooks, since such cases
exists in some of the applications (for ex-
ample in IEXPLORE.EXE this is done by the
IEFRAME.DLL module).

Countermeasures The attacker would have to
restore the original CS register value by, for exam-
ple, returning into a RETF instruction. To protect

against such attacks, firstly the current CS segment
will be monitored at the crucial program places and
secondly all the newly generated code segment se-
lector values will be pseudo-randomized.

4.3 Code Decoys

This approach requires a processor with NX bit [2]
support. The method itself is rather simple and it
can be described in few steps:

1. Mechanism setups a page fault filter and also
module filter, which activates each time after
a new module is mapped into process memory.

2. All code sections from selected module found
in the process memory are relocated to random
memory address with the preservation of the
section alignment (see Figure 3).

3. After the relocation is done original code sec-
tions are marked as not-executable (see Fig-
ure 3).

4. Each time a page fault occurs because of an
execution attempt of not-executable memory,
the filtering procedure decides if it should re-
calculate the instruction pointer and continue
the execution or to kill the process because of
exploitation attempt.

Figure 3: Code decoys created from original mod-
ules.

A similar idea was also used by the PaX Team in
RANDEXEC mechanism and also by Matt Miller
in the WehnTrust project [4].

To improve the performance of this mechanism,
special care must be taken when dealing with case-
switch offset tables — this was already mentioned

7

in Section 4.2. Additional performance improve-
ments can be achieved with import address table
redirecting, not unlike the idea explained in Sec-
tion 4.2. It is important, however, to point out
that this idea can also lower the protection level of
this mechanism.

Countermeasures The attacker would have to
guess or leak the mirrored code address.

5 Acknowledgments

Author would like to thank Brad Spengler, Matt
Miller and the Kryptos Logic team for helping with
this article.

6 Conclusion

In this article, a number of promising techniques
which can be used against the return-oriented pro-
gramming attacks were presented.

Most of the implementation problems of such
mitigations are directly linked to a heavy perfor-
mance impact. This is also a major factor in dis-
couraging incorporation of these (and other) ROP
mitigations into the selected platforms. Our secu-
rity mitigations do not solve the problem of using
return-oriented programming attacks completely,
but they can effectively trammel and limit their
usage.

References

[1] Dino A. Dai Zovi. Practical Return-Oriented
Programming. http://trailofbits.files.

wordpress.com/2010/04/practical-rop.

pdf.

[2] Eric Grevstad. CPU-Based Security: The NX
Bit. http://hardware.earthweb.com/chips/

article.php/3358421.

[3] Erik Buchanan, Ryan Roemer, Stefan Savage,
Hovav Shacham. Return-oriented Program-
ming: Exploitation without Code Injection.
https://www.blackhat.com/presentations/

bh-usa-08/Shacham/BH_US_08_Shacham_

Return_Oriented_Programming.pdf.

[4] Matt Miller. WehnTrust a Host-based Intrusion
Prevention System (HIPS) for Windows 2000,
XP, and Server 2003. http://wehntrust.

codeplex.com/.

[5] PaX Team. Pax Future. http://pax.

grsecurity.net/docs/pax-future.txt.

[6] PaX Team. Segmexec. http://pax.

grsecurity.net/docs/segmexec.txt.

[7] Hovav Shacham. The geometry of innocent flesh
on the bone: Return-into-libc without function
calls (on the x86). In Sabrina De Capitani di
Vimercati and Paul Syverson, editors, Proceed-

ings of CCS 2007, pages 552–61. ACM Press,
October 2007.

8

http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://hardware.earthweb.com/chips/article.php/3358421
http://hardware.earthweb.com/chips/article.php/3358421
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
http://wehntrust.codeplex.com/
http://wehntrust.codeplex.com/
http://pax.grsecurity.net/docs/pax-future.txt
http://pax.grsecurity.net/docs/pax-future.txt
http://pax.grsecurity.net/docs/segmexec.txt
http://pax.grsecurity.net/docs/segmexec.txt

	1 Introduction
	2 Return-oriented Programming
	3 Compiler-level mitigations
	3.1 Call-Ret relations
	3.1.1 Testing for CALLs
	3.1.2 Emitting magic values

	3.2 Obfuscating instructions

	4 Binary-level mitigations
	4.1 Stack Encapsulation
	4.1.1 New stack segment descriptor
	4.1.2 Monitoring stack pointer changes

	4.2 Code Encapsulation
	4.3 Code Decoys

	5 Acknowledgments
	6 Conclusion

